

Welcome to sir’s documentation!

Contents:

	Setup
	Installation

	AMQP Setup

	Solr

	MusicBrainz Database Schema

	Web Service Compatibility

	Usage

	The import process
	Paths

	Queues

	Service maintenance
	RabbitMQ

	API
	Indexing

	AMQP

	Querying

	Trigger Generation

	Schema

	Config

	Utilities

	Examples

Indices and tables

	Index

	Module Index

	Search Page

Setup

Installation

Git

If you want the latest code or even feel like contributing, the code is
available on Github [https://github.com/metabrainz/sir].

You can easily clone the code with git:

git clone git://github.com/metabrainz/sir.git

Now you can install it system-wide:

python2 setup.py install

or start hacking on the code. To do that, you’ll need to run at least:

python2 setup version

once to generate the file sir/version.py which the code needs. This file
does not have to be added into the git repository because it only contains the
hash of the current git commit, which changes after each commit operation.

Setup

The easiest way to run sir at the moment is to use a virtual environment [http://www.virtualenv.org/en/latest/]. Once you have virtualenv for Python
2.7 installed, use the following to create the environment:

virtualenv venv
source venv/bin/activate
pip install -r requirements.txt
cp config.ini.example config.ini

Note: Environment variables can be used in config.ini with the syntaxes
$NAME and ${NAME}. Undefined variables will not be replaced at all.
Escaping is not supported.

You can now use sir via:

python -m sir

AMQP Setup

RabbitMQ Server

To set up the exchanges and queues on your RabbitMQ server,

	install RabbitMQ [https://rabbitmq.com/] (if you have not already done so)

	start RabbitMQ

	configure your AMQP access data in config.ini

	run python -m sir amqp_setup to configure the necessary exchanges and
queues on your AMQP server.

The default values for the RabbitMQ configuration options can be found in the
RabbitMQ documentation [https://www.rabbitmq.com/configure.html].

Database

Sir requires that you both install an extension into your MusicBrainz database
and add triggers to it.

It also requires to have built the materialized (or denormalized) tables
for the MusicBrainz database.

AMQP Extension

	Install pg_amqp [https://github.com/omniti-labs/pg_amqp].

	Check values for the following keys in the file config.ini:

	Keys

	Description

	[database] user

	Name of the PostgreSQL user the MusicBrainz Server uses

	[rabbitmq] host

	The hostname that’s running your RabbitMQ server

	[rabbitmq] user

	The username with which to connect to your RabbitMQ server

	[rabbitmq] password

	The password with which to connect to your RabbitMQ server

	[rabbitmq] vhost

	The vhost on your RabbitMQ server

The default values for the RabbitMQ configuration options can be found in the
RabbitMQ documentation [https://www.rabbitmq.com/configure.html].

	Run python -m sir extension once to generate the file sql/CreateExtension.sql.

	Connect to your database as a superuser with psql to execute from this file.

Triggers

In addition to the steps above, it is necessary to install functions and
triggers into the database to send messages via AMQP after a change has been
applied to the database. Those can be found in the sql directory and will
send messages for all entity types by default.

If you just want search indices to be updated for a limited set of entity types,
for example artists and works, you can regenerated those by running

python -m sir triggers --entity-type artist --entity-type work

Once you are satisfied with the (default or generated) SQL triggers, those can
be installed with

MB_SERVER_PATH=<mb_path> make installsql

where <mb_path> is the path to your clone of the MusicBrainz server.

Solr

Of course you’ll need a Solr server somewhere to send the data to. The
mbsssss [https://github.com/metabrainz/mbsssss] repository contains instructions on how to add the MusicBrainz
schemas to a Solr server.

MusicBrainz Database Schema

Of course you’ll need a MusicBrainz database somewhere to read the data from.
The active database schema sequence must be 27 (or any future schema version
if still compatible). Follow announcements [https://blog.metabrainz.org/category/schema-change-release/] from the MetaBrainz blog.

Only Sir 3.y.z is able to read from database of schema sequence 27
(or any future schema if still compatible, but it reads and sends the
data made available from schema sequence 27 only).

Web Service Compatibility

If you have applications that are already able to parse search results from
search.musicbrainz.org in the mmd-schema [https://github.com/metabrainz/mmd-schema] XML or the derived JSON [https://musicbrainz.org/doc/Development/JSON_Web_Service] format,
you can enable the wscompat setting in the configuration file. This will
store an mmd-compatible XML document in a field called _store for each
Solr document.
Installing mb-solrquerywriter [https://github.com/metabrainz/mb-solrquerywriter/] on your Solr server will then allow you to
retrieve responses as mmd-compatible XML or the derived JSON.

Usage

As already mentioned in Setup, python -m sir is the entry point for the
command line interface which provides several subcommands:

	
reindex

	This subcommand allows reindexing data for specific or all entity types (see
The import process for more information).

	
triggers

	This subcommand regenerates the trigger files in the sql/ directory (see
AMQP Setup for more information).

	
amqp_setup

	This subcommand sets up AMQP exchanges and queues (see Triggers for
more information).

	
amqp_watch

	This subcommand starts a process that listens on the configured queues and
regenerates the index data (see Queues for more information).

All of them support the --help option that prints further information about
the available options.

The import process

The process to import data into Solr is relatively straightforward.
There’s a SearchEntity object for each
entity type that can be imported which keeps track of the indexable fields and
the model in mbdata for that entity type.

Once its known which entity types will be imported,
sir.indexing._multiprocessed_import() will successivey spawn
multiprocessing.Process [https://docs.python.org/2.7/library/multiprocessing.html#multiprocessing.Process] es via multiprocessing.pool [https://docs.python.org/2.7/library/multiprocessing.html#module-multiprocessing.pool] .
Each of the processes will retrieve one batch of entities from the database via
a query built from
build_entity_query() and convert
them
into regular dicts via
query_result_to_dict().
The result of the conversion will be passed into a
multiprocessing.Queue [https://docs.python.org/2.7/library/multiprocessing.html#multiprocessing.Queue].
On the other end of the queue, another process running
sir.indexing.queue_to_solr() will send them to Solr in batches.

[image: digraph indexing { graph [rankdir=TB] subgraph cluster_processes { graph [rankdir=LR] p_n [label="Process n"] p_dot [label="Process ..."] p_2 [label="Process #2"] p_1 [label="Process #1"] color = lightgrey } mb [label="MusicBrainz DB"] push_proc [label="Push process"] queue [label="Data queue" shape=diamond] solr [label="Solr server"] mb -> p_1; mb -> p_2; mb -> p_dot; mb -> p_n; p_n -> queue; p_dot -> queue; p_1 -> queue; p_2 -> queue; queue -> push_proc; push_proc -> solr; }]

Paths

Each SearchEntity is assigned a
declarative [https://docs.sqlalchemy.org/en/14/orm/extensions/declarative/index.html#declarative-toplevel] via its model attribute and a
collection of SearchField objects, each
corresponding to a field in the entities Solr core. Those fields each have one
or more paths that “lead” to the values that will be put into the field in
Solr. iterate_path_values() is a method that returns an
iterator over all values for a specific field from an instance of a
declarative [https://docs.sqlalchemy.org/en/14/orm/extensions/declarative/index.html#declarative-toplevel] class and its docstring describes
how that works, so here’s a verbatim copy of it:

	
querying.iterate_path_values(obj)

	Return an iterator over all values for path on obj, an instance of
a declarative [https://docs.sqlalchemy.org/en/14/orm/extensions/declarative/index.html#declarative-toplevel] class by first splitting
the path into its elements by splitting it on the dots, resulting in a list
of path elements. Then, for each element, a call to getattr() [https://docs.python.org/2.7/library/functions.html#getattr] is made
- the arguments will be the current model (which initially is the model
assigned to the SearchEntity) and the
current path element. After doing this, there are two cases:

	The path element is not the last one in the path. In this case, the
getattr() [https://docs.python.org/2.7/library/functions.html#getattr] call returns one or more objects of another model which
will replace the current one.

	The path element is the last one in the path. In this case, the value
returned by the getattr() [https://docs.python.org/2.7/library/functions.html#getattr] call will be returned and added to the
list of values for this field.

Warning

Hybrid attributes like @hybrid_property are currently not supported.

 Queues

Queues

The queue setup is similar to the one used by the CAA indexer [https://github.com/metabrainz/CAA-indexer]:

[image: digraph queues { graph [rankdir=LR]; search_exchange [shape=ellipse label="\"search\" exchange"]; delqueue [shape=record label="search.delete | { ... | ... | ... }"]; insqueue [shape=record label="search.index | { ... | ... | ... }"]; search_exchange -> delqueue [label="delete"]; search_exchange -> insqueue [label="insert"]; search_exchange -> insqueue [label="update"]; }]

The search exchange is the entry point for new messages. It will route them
to either the search.delete queue or the search.index one.

Messages in search.delete are used to delete documents from the Solr index
without any additional queries by simply calling solr.Solr.delete_many() [https://pythonhosted.org//solrpy/reference.html#solr.Solr.delete_many]
with the ids contained in the message.

For messages in search.index, additional queries have to be made to update
the data.

[image: digraph retry { graph [rankdir=LR]; retry_exchange [shape=ellipse label="\"search.retry\" fanout exchange"]; retryqueue [shape=record label="search.retry | { ... | ... | ... }"]; retry_exchange -> retryqueue; }]

If processing any message failed, it will be sent to the search.retry
queue, which automatically dead-letters them back to search after 4 hours
for another try.

[image: digraph failed { graph [rankdir=LR]; failed_exchange [shape=ellipse label="\"search.failed\" fanout exchange"]; failed_queue [shape=record label="search.failed | { ... | ... | ... }"]; failed_exchange -> failed_queue; }]

If processing a message failed too often, it will be put into search.failed
for manual inspection and intervention.

Note that all messages are processed by default, but it is possible to
optionally focus on processing message for a specified set of entity
types only, through the option --entity-type.

 Service maintenance

Service maintenance

RabbitMQ

Maintenance

Requirements

	Tolerance to connectivity issues:
When running in watch mode, losing connection to RabbitMQ can make the indexer
to stale indefinitely.
To recover, the container running the indexer has to be manually restarted.
See the ticket SEARCH-678 [https://tickets.metabrainz.org/browse/SEARCH-678]
for follow-up on improving tolerance.

	Maintenance mode:
It doesn’t exist.
To perform maintenance operations, it requires switching to another instance
of RabbitMQ to prevent any data loss, even for a short period of time.

	Data importance:
The RabbitMQ instance is conveying notification messages about changes that
must be made to the search indexes.
If any message is lost, all search indexes would have to be rebuilt,
which currently takes hours and implies a downtime for searches.
See the ticket SEARCH-674 [https://tickets.metabrainz.org/browse/SEARCH-674]
for follow-up on rebuilding with zero-downtime.

	Data persistence:
Messages are expected to be processed within seconds (or minutes during
activity peaks), so there is no need for persistent volumes.
Losing these messages isn’t critical either as search indexes can be
rebuilt in hours, so there is no need for backups either.

Procedures

	Start service:

See AMQP Setup

	Reload service configuration:

After:

	Check the indexer logs to ensure that it did not stale and that it continues
to process new messages.

	Stop service:

Before:

	Uninstall search triggers

	Stop the live indexer

It implies that search indexes will be outdated for good.
Updating search indexes requires to rebuild these and takes hours of downtime.

	Restart service:

It implies that search indexes will be likely missing some updates.
Updating search indexes requires to rebuild these and takes hours of downtime.

	Move service:

	Create vhost, user, permissions, queues in the new instance

	Declare exchanges and queues as described in AMQP Setup

	Update broker in PostgreSQL to point to the new instance

	Once the queues in the old instance are empty,
switch the live indexer to the new instance

Neiher data loss nor downtime will occur.

	Remove service:

Before:

	Uninstall search triggers

	Stop the live indexer

It implies that search indexes will be outdated for good.
Updating search indexes requires to rebuild these and takes hours of downtime.

Implementation details

	Connectivity issues are reported through both Docker logs and Sentry.

	Producer and consumer are separate as follows:

	Producer is pg_amqp used by triggers in Postgres database.

	ack mode: transactional

	heartbeat timeout: (not using 0.8 version)

	message protocol version: 0.8

	Consumer is sir running in watch mode for live indexing.

	ack mode: basic/manual

	heartbeat timeout: (not configured/server’s default)

	message protocol version: 0.9.1

	There are known issues related to queues declaration; See AMQP Setup

	Connections are not named properly (just using proxy interface IP and port)

 API

API

	Indexing

	AMQP

	Querying

	Trigger Generation

	Schema

	Config

	Utilities

	Examples

 Indexing

Indexing

	
sir.indexing.reindex(args)

	Reindexes all entity types in args[“entity_type”].

If no types are specified, all known entities will be reindexed.

	Parameters:

	args (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – A dictionary with a key named entities.

	
sir.indexing.index_entity(session, entity_name, bounds, data_queue)

	Retrieve rows for a single entity type identified by entity_name,
convert them to a dict with sir.indexing.query_result_to_dict() and
put the dicts into queue.

	Parameters:

	
	session (sqlalchemy.orm.Session [https://docs.sqlalchemy.org/en/14/orm/session_api.html#sqlalchemy.orm.Session]) –

	entity_name (str [https://docs.python.org/2.7/library/functions.html#str]) –

	bounds ((int [https://docs.python.org/2.7/library/functions.html#int], int [https://docs.python.org/2.7/library/functions.html#int])) –

	data_queue (Queue.Queue [https://docs.python.org/2.7/library/queue.html#Queue.Queue]) –

	
sir.indexing.queue_to_solr(queue, batch_size, solr_connection)

	Read dict [https://docs.python.org/2.7/library/stdtypes.html#dict] objects from queue and send them to the Solr server
behind solr_connection in batches of batch_size.

	Parameters:

	
	queue (multiprocessing.Queue [https://docs.python.org/2.7/library/multiprocessing.html#multiprocessing.Queue]) –

	batch_size (int [https://docs.python.org/2.7/library/functions.html#int]) –

	solr_connection (solr.Solr [https://pythonhosted.org//solrpy/reference.html#solr.Solr]) –

	
sir.indexing.send_data_to_solr(solr_connection, data)

	Sends data through solr_connection.

	Parameters:

	
	solr_connection (solr.Solr [https://pythonhosted.org//solrpy/reference.html#solr.Solr]) –

	data ([dict [https://docs.python.org/2.7/library/stdtypes.html#dict]]) –

	Raises:

	solr.SolrException [https://pythonhosted.org//solrpy/reference.html#solr.SolrException]

	
sir.indexing._multiprocessed_import(entity_names, live=False, entities=None)

	Does the real work to import all entities with entity_name in multiple
processes via the multiprocessing [https://docs.python.org/2.7/library/multiprocessing.html#module-multiprocessing] module.

When live is True, it means, we are live indexing documents with ids in the
entities dict, otherwise it reindexes the entire table for entities in
entity_names.

	Parameters:

	
	entity_names ([str [https://docs.python.org/2.7/library/functions.html#str]]) –

	live (bool [https://docs.python.org/2.7/library/functions.html#bool]) –

	entities (dict [https://docs.python.org/2.7/library/stdtypes.html#dict](set [https://docs.python.org/2.7/library/stdtypes.html#set](int [https://docs.python.org/2.7/library/functions.html#int]))) –

	
sir.indexing._index_entity_process_wrapper(args, live=False)

	Calls sir.indexing.index_entity() with args unpacked.

	Parameters:

	live (bool [https://docs.python.org/2.7/library/functions.html#bool]) –

	Return type:

	None [https://docs.python.org/2.7/library/constants.html#None] or an Exception

	
sir.indexing.live_index(entities)

	
Reindex all documents in``entities`` in multiple processes via the

multiprocessing [https://docs.python.org/2.7/library/multiprocessing.html#module-multiprocessing] module.

	Parameters:

	entities (dict [https://docs.python.org/2.7/library/stdtypes.html#dict](set [https://docs.python.org/2.7/library/stdtypes.html#set](int [https://docs.python.org/2.7/library/functions.html#int]))) –

	
sir.indexing.live_index_entity(session, entity_name, ids, data_queue)

	Retrieve rows for a single entity type identified by entity_name,
convert them to a dict with sir.indexing.query_result_to_dict() and
put the dicts into queue.

	Parameters:

	
	session (sqlalchemy.orm.Session [https://docs.sqlalchemy.org/en/14/orm/session_api.html#sqlalchemy.orm.Session]) –

	entity_name (str [https://docs.python.org/2.7/library/functions.html#str]) –

	ids ([int [https://docs.python.org/2.7/library/functions.html#int]]) –

	data_queue (Queue.Queue [https://docs.python.org/2.7/library/queue.html#Queue.Queue]) –

 AMQP

AMQP

	
sir.amqp.setup.setup_rabbitmq(args)

	Set up the AMQP server.

	Parameters:

	args – will be ignored

	
sir.amqp.handler.callback_wrapper(f)

	Common wrapper for a message callback function that provides basic sanity
checking for messages and provides exception handling for a function it wraps.

The following wrapper function is returned:

	
sir.amqp.handler.wrapper(self, msg, queue)

	
	Parameters:

	
	self (sir.amqp.handler.Handler) – Handler object that is processing a message.

	msg (amqp.basic_message.Message [https://docs.celeryq.dev/projects/amqp/en/latest/reference/amqp.basic_message.html#amqp.basic_message.Message]) – Message itself.

	queue (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of the queue that the message has originated from.

Calls f with self and an instance of Message.
If an exception gets raised by f, it will be caught and the message will be
rejected [https://docs.celeryq.dev/projects/amqp/en/latest/reference/amqp.channel.html#amqp.channel.Channel.basic_reject] and sent to the
search.failed queue (cf. Queues). Then the exception will not be
reraised.

If no exception is raised, the message will be acknowledged [https://docs.celeryq.dev/projects/amqp/en/latest/reference/amqp.channel.html#amqp.channel.Channel.basic_ack].

	
sir.amqp.handler.watch(args)

	Watch AMQP queues for messages.

	Parameters:

	entity_type ([str [https://docs.python.org/2.7/library/functions.html#str]]) – Entity types to watch.

	
class sir.amqp.handler.Handler(entities)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

This class is used to provide callbacks for AMQP messages and access to
Solr cores.

	
ack_message(msg, *args, **kwargs)

	

	
connect_to_rabbitmq(reconnect=False)

	

	
delete_callback(msg, queue)

	Callback for processing delete messages.

Messages for deletion have the following format:

<table name>, <id or gid>

First value is a table name for an entity that has been deleted.
Second is GID or ID of the row in that table. For example:

{“_table”: “release”, “gid”: “90d7709d-feba-47e6-a2d1-8770da3c3d9c”}

This callback function is expected to receive messages only from
entity tables all of which have a gid column on them except the ones
in _ID_DELETE_TABLE_NAMES which are deleted via their id.

	Parameters:

	parsed_message (sir.amqp.message.Message) – Message parsed by the callback_wrapper.

	
index_callback(msg, queue)

	Callback for processing index messages.

Messages for indexing have the following format:

<table name>, keys{<column name>, <value>}

First value is a table name, followed by primary key values for that
table. These are then used to lookup values that need to be updated.
For example:

{“_table”: “artist_credit_name”, “position”: 0, “artist_credit”: 1}

In this handler we are doing a selection with joins which follow a “path”
from a table that the trigger was received from to an entity (later
“core”, https://wiki.apache.org/solr/SolrTerminology). To know which
data to retrieve we are using PK(s) of a table that was updated.
update_map provides us with a view of dependencies between entities
(cores) and all the tables. So if data in some table has been updated,
we know which entities store this data in the index and need to be
refreshed.

	Parameters:

	parsed_message (sir.amqp.message.Message) – Message parsed by the callback_wrapper.

	
process_messages()

	

	
reject_message(msg, *args, **kwargs)

	

	
requeue_message(msg, *args, **kwargs)

	

	
sir.amqp.handler._DEFAULT_MB_RETRIES = 4

	The number of times we’ll try to process a message.

	
sir.amqp.handler._RETRY_WAIT_SECS = 30

	The number of seconds between each connection attempt to the AMQP server.

This module contains functions and classes to parse and represent the content
of an AMQP message.

	
exception sir.amqp.message.InvalidMessageContentException

	Bases: exceptions.ValueError [https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError]

Exception indicating an error with the content of an AMQP message.

	
class sir.amqp.message.MESSAGE_TYPES

	Bases: enum.Enum

	
delete = 1

	

	
index = 2

	

	
class sir.amqp.message.Message(message_type, table_name, columns, operation)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A parsed message from AMQP.

Construct a new message object.

A message contains a set of columns (dict) which can be used to determine
which row has been updated. In case of messages from the index queue
it will be a set of PK columns, and gid column for delete queue messages.

	Parameters:

	
	message_type – Type of the message. A member of MESSAGE_TYPES.

	table_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of the table the message is associated with.

	columns (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary mapping columns of the table to their values.

	
classmethod from_amqp_message(queue_name, amqp_message)

	Parses an AMQP message.

	Parameters:

	
	queue_name (str [https://docs.python.org/2.7/library/functions.html#str]) – Name of the queue where the message originated from.

	amqp_message (amqp.basic_message.Message [https://docs.celeryq.dev/projects/amqp/en/latest/reference/amqp.basic_message.html#amqp.basic_message.Message]) – Message object from the queue.

	Return type:

	sir.amqp.message.Message

 Querying

Querying

	
sir.querying.iter_bounds(db_session, column, batch_size, importlimit)

	Return a list of (lower bound, upper bound) tuples which contain row ids to
iterate through a table in batches of batch_size. If importlimit is
greater than zero, return only enough tuples to contain importlimit
rows. The second element of the last tuple in the returned list may be
None. This happens if the last batch will contain less than
batch_size rows.

	Parameters:

	
	db_session (sqlalchemy.orm.session.Session [https://docs.sqlalchemy.org/en/14/orm/session_api.html#sqlalchemy.orm.Session]) –

	column (sqlalchemy.Column) –

	batch_size (int [https://docs.python.org/2.7/library/functions.html#int]) –

	importlimit (int [https://docs.python.org/2.7/library/functions.html#int]) –

	Return type:

	[(int [https://docs.python.org/2.7/library/functions.html#int], int [https://docs.python.org/2.7/library/functions.html#int])]

	
sir.querying.iterate_path_values(path, obj)

	Return an iterator over all values for path on obj, an instance of
a declarative [https://docs.sqlalchemy.org/en/14/orm/extensions/declarative/index.html#declarative-toplevel] class by first splitting
the path into its elements by splitting it on the dots, resulting in a list
of path elements. Then, for each element, a call to getattr() [https://docs.python.org/2.7/library/functions.html#getattr] is made
- the arguments will be the current model (which initially is the model
assigned to the SearchEntity) and the
current path element. After doing this, there are two cases:

	The path element is not the last one in the path. In this case, the
getattr() [https://docs.python.org/2.7/library/functions.html#getattr] call returns one or more objects of another model which
will replace the current one.

	The path element is the last one in the path. In this case, the value
returned by the getattr() [https://docs.python.org/2.7/library/functions.html#getattr] call will be returned and added to the
list of values for this field.

Warning

Hybrid attributes like @hybrid_property are currently not supported.

 Trigger Generation

Trigger Generation

	
sir.trigger_generation.generate(trigger_filename, function_filename, broker_id, entities)

	Generates SQL queries that create and remove triggers for the MusicBrainz database.

Generation works in the following way:

	
	Determine which tables need to have triggers on them:

	
	Entity tables themselves

	Tables in every path of entity’s fields

	
	Generate triggers (for inserts, updates, and deletions) for each table (model in mbdata):

	2.1. Get a list of PKs
2.2. Write triggers that would send messages into appropriate RabbitMQ queues (“search.index”

queue for INSERT and UPDATE queries, “search.delete” for DELETE queries):

<table name>, PKs{<PK row name>, <PK value>}

	Write generated triggers into SQL scripts to be run on the MusicBrainz database

Since table might have multiple primary keys, we need to explicitly specify their row names and values.

	
sir.trigger_generation.generate_func(args)

	This is the entry point for this trigger_generation module. This function
gets called from main().

	
sir.trigger_generation.get_trigger_tables(entities)

	Determines which tables need to have triggers set on them.

Returns a dictionary of table names (key) with a dictionary (value) that
provides additional information about a table:

	list of primary keys for each table.

	whether it’s an entity table

:param [str] entities Which entity types to index if not all.

	
sir.trigger_generation.write_footer(f)

	Write an SQL “footer” into a file.

Adds a statement to commit a transaction. Should be written at the end of
each SQL script that wrote a header (see write_header function).

	Parameters:

	f (file) – File to write the footer into.

	
sir.trigger_generation.write_header(f)

	Write an SQL “header” into a file.

Adds a note about editing, sets command line options, and begins a
transaction. Should be written at the beginning of each SQL script.

	Parameters:

	f (file) – File to write the header into.

	
sir.trigger_generation.write_triggers(trigger_file, function_file, model, is_direct, has_gid, **generator_args)

	
	Parameters:

	
	file trigger_file (str [https://docs.python.org/2.7/library/functions.html#str]) – File where triggers will be written.

	file function_file (str [https://docs.python.org/2.7/library/functions.html#str]) – File where functions will be written.

	model – A declarative [https://docs.sqlalchemy.org/en/14/orm/extensions/declarative/index.html#declarative-toplevel] class.

	is_direct (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Whether this is an entity table or not.

	
sir.trigger_generation.write_triggers_to_file(generators, trigger_file, function_file, **generator_args)

	Write SQL for creation of triggers (for deletion, insertion, and updates) and
associated functions into files.

	Parameters:

	
	generators (list) – A set of generator classes (based on``TriggerGenerator``)
to use for creating SQL statements.

	trigger_file (file) – File into which commands for creating triggers will be written.

	function_file (file) – File into which commands for creating trigger functions
will be written.

	
class sir.trigger_generation.sql_generator.TriggerGenerator(table_name, pk_columns, fk_columns, broker_id=1, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Base generator class for triggers and corresponding function that would go
into the MusicBrainz database.

	Parameters:

	
	table_name (str [https://docs.python.org/2.7/library/functions.html#str]) – The table on which to generate the trigger.

	pk_columns – List of primary key column names for a table that
this trigger is being generated for.

	broker_id (int [https://docs.python.org/2.7/library/functions.html#int]) – ID of the AMQP broker row in a database.

	
op = None

	The operation (INSERT, UPDATE, or DELETE)

	
trigger()

	The CREATE TRIGGER statement for this trigger.

	Return type:

	str [https://docs.python.org/2.7/library/functions.html#str]

	
function()

	The CREATE FUNCTION statement for this trigger.

https://www.postgresql.org/docs/9.0/static/plpgsql-structure.html

We use https://github.com/omniti-labs/pg_amqp to publish messages to
an AMQP broker.

	Return type:

	str [https://docs.python.org/2.7/library/functions.html#str]

	
trigger_name

	The name of this trigger and its function.

	Return type:

	str [https://docs.python.org/2.7/library/functions.html#str]

	
class sir.trigger_generation.sql_generator.InsertTriggerGenerator(table_name, pk_columns, fk_columns, broker_id=1, **kwargs)

	Bases: sir.trigger_generation.sql_generator.TriggerGenerator

A trigger generator for INSERT operations.

	Parameters:

	
	table_name (str [https://docs.python.org/2.7/library/functions.html#str]) – The table on which to generate the trigger.

	pk_columns – List of primary key column names for a table that
this trigger is being generated for.

	broker_id (int [https://docs.python.org/2.7/library/functions.html#int]) – ID of the AMQP broker row in a database.

	
class sir.trigger_generation.sql_generator.UpdateTriggerGenerator(**gen_args)

	Bases: sir.trigger_generation.sql_generator.TriggerGenerator

A trigger generator for UPDATE operations.

	
trigger()

	The CREATE TRIGGER statement for this trigger.

	Return type:

	str [https://docs.python.org/2.7/library/functions.html#str]

	
class sir.trigger_generation.sql_generator.DeleteTriggerGenerator(table_name, pk_columns, fk_columns, broker_id=1, **kwargs)

	Bases: sir.trigger_generation.sql_generator.TriggerGenerator

A trigger generator for DELETE operations.

	Parameters:

	
	table_name (str [https://docs.python.org/2.7/library/functions.html#str]) – The table on which to generate the trigger.

	pk_columns – List of primary key column names for a table that
this trigger is being generated for.

	broker_id (int [https://docs.python.org/2.7/library/functions.html#int]) – ID of the AMQP broker row in a database.

	
class sir.trigger_generation.sql_generator.GIDDeleteTriggerGenerator(*args, **kwargs)

	Bases: sir.trigger_generation.sql_generator.DeleteTriggerGenerator

This trigger generator produces DELETE statements that selects just gid
row and ignores primary keys.

It should be used for entity tables themselves (in “direct” triggers) for
tables like “artist”, “release_group”, “recording”, and the rest.

	
class sir.trigger_generation.sql_generator.ReferencedDeleteTriggerGenerator(table_name, pk_columns, fk_columns, broker_id=1, **kwargs)

	Bases: sir.trigger_generation.sql_generator.DeleteTriggerGenerator

A trigger generator for DELETE operations for tables which are referenced
in SearchEntity tables. Delete operations in such tables cause the main
SearchEntity tables to be updated.

	Parameters:

	
	table_name (str [https://docs.python.org/2.7/library/functions.html#str]) – The table on which to generate the trigger.

	pk_columns – List of primary key column names for a table that
this trigger is being generated for.

	broker_id (int [https://docs.python.org/2.7/library/functions.html#int]) – ID of the AMQP broker row in a database.

 Schema

Schema

This package contains core entities that are used in the search index and
various tools for working with them.

	
sir.schema.SCHEMA = {'annotation': <sir.schema.searchentities.SearchEntity object>, 'area': <sir.schema.searchentities.SearchEntity object>, 'artist': <sir.schema.searchentities.SearchEntity object>, 'cdstub': <sir.schema.searchentities.SearchEntity object>, 'editor': <sir.schema.searchentities.SearchEntity object>, 'event': <sir.schema.searchentities.SearchEntity object>, 'instrument': <sir.schema.searchentities.SearchEntity object>, 'label': <sir.schema.searchentities.SearchEntity object>, 'place': <sir.schema.searchentities.SearchEntity object>, 'recording': <sir.schema.searchentities.SearchEntity object>, 'release': <sir.schema.searchentities.SearchEntity object>, 'release-group': <sir.schema.searchentities.SearchEntity object>, 'series': <sir.schema.searchentities.SearchEntity object>, 'tag': <sir.schema.searchentities.SearchEntity object>, 'url': <sir.schema.searchentities.SearchEntity object>, 'work': <sir.schema.searchentities.SearchEntity object>}

	Maps core names to SearchEntity objects.

	
sir.schema.generate_update_map()

	Generates mapping from tables to Solr cores (entities) that depend on
these tables and the columns of those tables. In addition provides a
path along which data of an entity can be retrieved by performing a set
of JOINs and a map of table names to SQLAlchemy ORM models and other useful
mappings.

Uses paths to determine the dependency.

:rtype (dict, dict, dict, dict)

	
class sir.schema.searchentities.SearchEntity(model, fields, version, compatconverter=None, extrapaths=None, extraquery=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

An entity with searchable fields.

	Parameters:

	
	model – A declarative [https://docs.sqlalchemy.org/en/14/orm/extensions/declarative/index.html#declarative-toplevel] class.

	fields (list) – A list of SearchField objects.

	version (float [https://docs.python.org/2.7/library/functions.html#float]) – The supported schema version of this entity.

	compatconverter – A function to convert this object into an XML
document compliant with the MMD schema version
2

	extrapaths ([str [https://docs.python.org/2.7/library/functions.html#str]]) – A list of paths that don’t correspond to any
field but are used by the compatibility
conversion

	extraquery – A function to apply to the object returned by
query().

	
build_entity_query()

	Builds a sqlalchemy.orm.query.Query [https://docs.sqlalchemy.org/en/14/orm/query.html#sqlalchemy.orm.Query] object for this
entity (an instance of sir.schema.searchentities.SearchEntity)
that eagerly loads the values of all search fields.

	Return type:

	sqlalchemy.orm.query.Query [https://docs.sqlalchemy.org/en/14/orm/query.html#sqlalchemy.orm.Query]

	
query

	See build_entity_query().

	
query_result_to_dict(obj)

	Converts the result of single query result into a dictionary via the
field specification of this entity.

	Parameters:

	obj – A declarative [https://docs.sqlalchemy.org/en/14/orm/extensions/declarative/index.html#declarative-toplevel] object.

	Return type:

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]

	
class sir.schema.searchentities.SearchField(name, paths, transformfunc=None, trigger=True)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Represents a searchable field.

Each search field has a name and a set of paths. Name is used to reference
a field in search queries. Path indicates where the value of that field can
be found.

Paths are structured in the following way:

[<one or multiple dot-delimited relationships>.]<column name>

These paths can then be mapped to actual relationships and columns defined
in the MusicBrainz schema (see sir.schema package and mbdata module).

For example, path “areas.area.gid”, when bound to the CustomAnnotation
model would be expanded in the following way:

	areas relationship from the CustomAnnotation class

	area relationship from the AreaAnnotation class (model)

	gid column from the Area class (model)

	Parameters:

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the field.

	paths ([str [https://docs.python.org/2.7/library/functions.html#str]]) – A dot-delimited path (or a list of them) along which
the value of this field can be found, beginning at
an instance of the model class this field is bound to.
See class documentation for more details.

	transformfunc (method) – An optional function to transform the
value before sending it to Solr.

	
sir.schema.searchentities.defer_everything_but(mapper, load, *columns)

	

	
sir.schema.searchentities.is_composite_column(model, colname)

	Checks if a models attribute is a composite column.

	Parameters:

	
	model – A declarative [https://docs.sqlalchemy.org/en/14/orm/extensions/declarative/index.html#declarative-toplevel] class.

	colname (str [https://docs.python.org/2.7/library/functions.html#str]) – The column name.

	Return type:

	bool [https://docs.python.org/2.7/library/functions.html#bool]

	
sir.schema.searchentities.merge_paths(field_paths)

	Given a list of paths as field_paths, return a dict that, for each
level of the path, includes a dictionary whose keys are the columns to load
and the values are other dictionaries of the described structure.

	Parameters:

	field_paths ([[str [https://docs.python.org/2.7/library/functions.html#str]]]) –

	Return type:

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]

 Config

Config

	
sir.config.CFG = None

	A SafeExpandingConfigParser instance holding the configuration
data.

	
exception sir.config.ConfigError

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
class sir.config.SafeExpandingConfigParser(defaults=None, dict_type=<class 'collections.OrderedDict'>, allow_no_value=False)

	Bases: ConfigParser.SafeConfigParser [https://docs.python.org/2.7/library/configparser.html#ConfigParser.SafeConfigParser], object [https://docs.python.org/2.7/library/functions.html#object]

	
sir.config.read_config()

	Read config files from all possible locations and set
sir.config.CFG to a SafeExpandingConfigParser
instance.

 Utilities

Utilities

	
exception sir.util.SIR_EXIT

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
exception sir.util.VersionMismatchException(core, expected, actual)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
sir.util.check_solr_cores_version(cores)

	Checks multiple Solr cores for version compatibility

	Parameters:

	cores ([str [https://docs.python.org/2.7/library/functions.html#str]]) – The names of the cores

	Raises:

	sir.util.VersionMismatchException – If the version in Solr is
different from the supported one

	
sir.util.create_amqp_connection()

	Creates a connection to an AMQP server.

	Return type:

	amqp.connection.Connection [https://docs.celeryq.dev/projects/amqp/en/latest/reference/amqp.connection.html#amqp.connection.Connection]

	
sir.util.db_session()

	Creates a new sqlalchemy.orm.session.sessionmaker [https://docs.sqlalchemy.org/en/14/orm/session_api.html#sqlalchemy.orm.sessionmaker].

	Return type:

	sqlalchemy.orm.session.sessionmaker [https://docs.sqlalchemy.org/en/14/orm/session_api.html#sqlalchemy.orm.sessionmaker]

	
sir.util.db_session_ctx(*args, **kwds)

	A context manager yielding a database session.

	Parameters:

	Session (sqlalchemy.orm.session.sessionmaker [https://docs.sqlalchemy.org/en/14/orm/session_api.html#sqlalchemy.orm.sessionmaker]) –

	
sir.util.engine()

	Create a new sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine].

	Return type:

	sqlalchemy.engine.Engine [https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine]

	
sir.util.solr_connection(core)

	Creates a solr.Solr [https://pythonhosted.org//solrpy/reference.html#solr.Solr] connection for the core core.

	Parameters:

	core (str [https://docs.python.org/2.7/library/functions.html#str]) –

	Raises:

	urllib2.URLError [https://docs.python.org/2.7/library/urllib2.html#urllib2.URLError] – if a ping to the cores ping handler doesn’t
succeed

	Return type:

	solr.Solr [https://pythonhosted.org//solrpy/reference.html#solr.Solr]

	
sir.util.solr_version_check(core)

	Checks that the version of the Solr core core matches the one in the
schema.

	Parameters:

	core (str [https://docs.python.org/2.7/library/functions.html#str]) –

	Raises:

	
	urllib2.URLError [https://docs.python.org/2.7/library/urllib2.html#urllib2.URLError] – If the Solr core can’t be reached

	sir.util.VersionMismatchException – If the version in Solr is
different from the supported one

 Examples

Examples

	
class mbdata.models.Artist(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
aliases

	

	
area

	

	
area_id

	

	
begin_area

	

	
begin_area_id

	

	
begin_date

	

	
begin_date_day

	

	
begin_date_month

	

	
begin_date_year

	

	
comment

	

	
edits_pending

	

	
end_area

	

	
end_area_id

	

	
end_date

	

	
end_date_day

	

	
end_date_month

	

	
end_date_year

	

	
ended

	

	
gender

	

	
gender_id

	

	
gid

	

	
id

	

	
ipis

	

	
isnis

	

	
last_updated

	

	
meta

	

	
name

	

	
sort_name

	

	
type

	

	
type_id

	

	
class mbdata.models.Area(**kwargs)

	Bases: sqlalchemy.orm.decl_api.Base

A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and
values in kwargs.

Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.

	
begin_date

	

	
begin_date_day

	

	
begin_date_month

	

	
begin_date_year

	

	
comment

	

	
edits_pending

	

	
end_date

	

	
end_date_day

	

	
end_date_month

	

	
end_date_year

	

	
ended

	

	
gid

	

	
id

	

	
iso_3166_1_codes

	

	
iso_3166_2_codes

	

	
iso_3166_3_codes

	

	
last_updated

	

	
name

	

	
type

	

	
type_id

	

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sir	

 	
 	
 sir.amqp	

 	
 	
 sir.amqp.handler	

 	
 	
 sir.amqp.message	

 	
 	
 sir.amqp.setup	

 	
 	
 sir.config	

 	
 	
 sir.indexing	

 	
 	
 sir.querying	

 	
 	
 sir.schema	

 	
 	
 sir.schema.searchentities	

 	
 	
 sir.trigger_generation	

 	
 	
 sir.trigger_generation.sql_generator	

 	
 	
 sir.util	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_DEFAULT_MB_RETRIES (in module sir.amqp.handler)

 	_index_entity_process_wrapper() (in module sir.indexing)

 	
 	_multiprocessed_import() (in module sir.indexing)

 	_RETRY_WAIT_SECS (in module sir.amqp.handler)

A

 	
 	ack_message() (sir.amqp.handler.Handler method)

 	aliases (mbdata.models.Artist attribute)

 	
 amqp_setup

 	python--m-sir command line option

 	
 amqp_watch

 	python--m-sir command line option

 	
 	Area (class in mbdata.models)

 	area (mbdata.models.Artist attribute)

 	area_id (mbdata.models.Artist attribute)

 	Artist (class in mbdata.models)

B

 	
 	begin_area (mbdata.models.Artist attribute)

 	begin_area_id (mbdata.models.Artist attribute)

 	begin_date (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	begin_date_day (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	
 	begin_date_month (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	begin_date_year (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	build_entity_query() (sir.schema.searchentities.SearchEntity method)

C

 	
 	callback_wrapper() (in module sir.amqp.handler)

 	CFG (in module sir.config)

 	check_solr_cores_version() (in module sir.util)

 	comment (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	
 	ConfigError

 	connect_to_rabbitmq() (sir.amqp.handler.Handler method)

 	create_amqp_connection() (in module sir.util)

D

 	
 	db_session() (in module sir.util)

 	db_session_ctx() (in module sir.util)

 	defer_everything_but() (in module sir.schema.searchentities)

 	
 	delete (sir.amqp.message.MESSAGE_TYPES attribute)

 	delete_callback() (sir.amqp.handler.Handler method)

 	DeleteTriggerGenerator (class in sir.trigger_generation.sql_generator)

E

 	
 	edits_pending (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	end_area (mbdata.models.Artist attribute)

 	end_area_id (mbdata.models.Artist attribute)

 	end_date (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	end_date_day (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	
 	end_date_month (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	end_date_year (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	ended (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	engine() (in module sir.util)

F

 	
 	from_amqp_message() (sir.amqp.message.Message class method)

 	
 	function() (sir.trigger_generation.sql_generator.TriggerGenerator method)

G

 	
 	gender (mbdata.models.Artist attribute)

 	gender_id (mbdata.models.Artist attribute)

 	generate() (in module sir.trigger_generation)

 	generate_func() (in module sir.trigger_generation)

 	
 	generate_update_map() (in module sir.schema)

 	get_trigger_tables() (in module sir.trigger_generation)

 	gid (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	GIDDeleteTriggerGenerator (class in sir.trigger_generation.sql_generator)

H

 	
 	Handler (class in sir.amqp.handler)

I

 	
 	id (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	index (sir.amqp.message.MESSAGE_TYPES attribute)

 	index_callback() (sir.amqp.handler.Handler method)

 	index_entity() (in module sir.indexing)

 	InsertTriggerGenerator (class in sir.trigger_generation.sql_generator)

 	InvalidMessageContentException

 	
 	ipis (mbdata.models.Artist attribute)

 	is_composite_column() (in module sir.schema.searchentities)

 	isnis (mbdata.models.Artist attribute)

 	iso_3166_1_codes (mbdata.models.Area attribute)

 	iso_3166_2_codes (mbdata.models.Area attribute)

 	iso_3166_3_codes (mbdata.models.Area attribute)

 	iter_bounds() (in module sir.querying)

 	iterate_path_values() (in module sir.querying)

L

 	
 	last_updated (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	
 	live_index() (in module sir.indexing)

 	live_index_entity() (in module sir.indexing)

M

 	
 	merge_paths() (in module sir.schema.searchentities)

 	Message (class in sir.amqp.message)

 	
 	MESSAGE_TYPES (class in sir.amqp.message)

 	meta (mbdata.models.Artist attribute)

N

 	
 	name (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

O

 	
 	op (sir.trigger_generation.sql_generator.TriggerGenerator attribute)

P

 	
 	process_messages() (sir.amqp.handler.Handler method)

 	
 python--m-sir command line option

 	amqp_setup

 	amqp_watch

 	reindex

 	triggers

Q

 	
 	query (sir.schema.searchentities.SearchEntity attribute)

 	
 	query_result_to_dict() (sir.schema.searchentities.SearchEntity method)

 	queue_to_solr() (in module sir.indexing)

R

 	
 	read_config() (in module sir.config)

 	ReferencedDeleteTriggerGenerator (class in sir.trigger_generation.sql_generator)

 	
 reindex

 	python--m-sir command line option

 	
 	reindex() (in module sir.indexing)

 	reject_message() (sir.amqp.handler.Handler method)

 	requeue_message() (sir.amqp.handler.Handler method)

S

 	
 	SafeExpandingConfigParser (class in sir.config)

 	SCHEMA (in module sir.schema)

 	SearchEntity (class in sir.schema.searchentities)

 	SearchField (class in sir.schema.searchentities)

 	send_data_to_solr() (in module sir.indexing)

 	setup_rabbitmq() (in module sir.amqp.setup)

 	sir.amqp (module)

 	sir.amqp.handler (module)

 	sir.amqp.message (module)

 	sir.amqp.setup (module)

 	sir.config (module)

 	
 	sir.indexing (module)

 	sir.querying (module)

 	sir.schema (module)

 	sir.schema.searchentities (module)

 	sir.trigger_generation (module)

 	sir.trigger_generation.sql_generator (module)

 	sir.util (module)

 	SIR_EXIT

 	solr_connection() (in module sir.util)

 	solr_version_check() (in module sir.util)

 	sort_name (mbdata.models.Artist attribute)

T

 	
 	trigger() (sir.trigger_generation.sql_generator.TriggerGenerator method)

 	(sir.trigger_generation.sql_generator.UpdateTriggerGenerator method)

 	trigger_name (sir.trigger_generation.sql_generator.TriggerGenerator attribute)

 	TriggerGenerator (class in sir.trigger_generation.sql_generator)

 	
 triggers

 	python--m-sir command line option

 	
 	type (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

 	type_id (mbdata.models.Area attribute)

 	(mbdata.models.Artist attribute)

U

 	
 	UpdateTriggerGenerator (class in sir.trigger_generation.sql_generator)

V

 	
 	VersionMismatchException

W

 	
 	watch() (in module sir.amqp.handler)

 	wrapper() (in module sir.amqp.handler)

 	write_footer() (in module sir.trigger_generation)

 	
 	write_header() (in module sir.trigger_generation)

 	write_triggers() (in module sir.trigger_generation)

 	write_triggers_to_file() (in module sir.trigger_generation)

 RabbitMQ

RabbitMQ

Maintenance

Requirements

	Tolerance to connectivity issues:
When running in watch mode, losing connection to RabbitMQ can make the indexer
to stale indefinitely.
To recover, the container running the indexer has to be manually restarted.
See the ticket SEARCH-678 [https://tickets.metabrainz.org/browse/SEARCH-678]
for follow-up on improving tolerance.

	Maintenance mode:
It doesn’t exist.
To perform maintenance operations, it requires switching to another instance
of RabbitMQ to prevent any data loss, even for a short period of time.

	Data importance:
The RabbitMQ instance is conveying notification messages about changes that
must be made to the search indexes.
If any message is lost, all search indexes would have to be rebuilt,
which currently takes hours and implies a downtime for searches.
See the ticket SEARCH-674 [https://tickets.metabrainz.org/browse/SEARCH-674]
for follow-up on rebuilding with zero-downtime.

	Data persistence:
Messages are expected to be processed within seconds (or minutes during
activity peaks), so there is no need for persistent volumes.
Losing these messages isn’t critical either as search indexes can be
rebuilt in hours, so there is no need for backups either.

Procedures

	Start service:

See AMQP Setup

	Reload service configuration:

After:

	Check the indexer logs to ensure that it did not stale and that it continues
to process new messages.

	Stop service:

Before:

	Uninstall search triggers

	Stop the live indexer

It implies that search indexes will be outdated for good.
Updating search indexes requires to rebuild these and takes hours of downtime.

	Restart service:

It implies that search indexes will be likely missing some updates.
Updating search indexes requires to rebuild these and takes hours of downtime.

	Move service:

	Create vhost, user, permissions, queues in the new instance

	Declare exchanges and queues as described in AMQP Setup

	Update broker in PostgreSQL to point to the new instance

	Once the queues in the old instance are empty,
switch the live indexer to the new instance

Neiher data loss nor downtime will occur.

	Remove service:

Before:

	Uninstall search triggers

	Stop the live indexer

It implies that search indexes will be outdated for good.
Updating search indexes requires to rebuild these and takes hours of downtime.

Implementation details

	Connectivity issues are reported through both Docker logs and Sentry.

	Producer and consumer are separate as follows:

	Producer is pg_amqp used by triggers in Postgres database.

	ack mode: transactional

	heartbeat timeout: (not using 0.8 version)

	message protocol version: 0.8

	Consumer is sir running in watch mode for live indexing.

	ack mode: basic/manual

	heartbeat timeout: (not configured/server’s default)

	message protocol version: 0.9.1

	There are known issues related to queues declaration; See AMQP Setup

	Connections are not named properly (just using proxy interface IP and port)

 MusicBrainz Database Schema

MusicBrainz Database Schema

Of course you’ll need a MusicBrainz database somewhere to read the data from.
The active database schema sequence must be 27 (or any future schema version
if still compatible). Follow announcements [https://blog.metabrainz.org/category/schema-change-release/] from the MetaBrainz blog.

Only Sir 3.y.z is able to read from database of schema sequence 27
(or any future schema if still compatible, but it reads and sends the
data made available from schema sequence 27 only).

 Solr

Solr

Of course you’ll need a Solr server somewhere to send the data to. The
mbsssss [https://github.com/metabrainz/mbsssss] repository contains instructions on how to add the MusicBrainz
schemas to a Solr server.

 Web Service Compatibility

Web Service Compatibility

If you have applications that are already able to parse search results from
search.musicbrainz.org in the mmd-schema [https://github.com/metabrainz/mmd-schema] XML or the derived JSON [https://musicbrainz.org/doc/Development/JSON_Web_Service] format,
you can enable the wscompat setting in the configuration file. This will
store an mmd-compatible XML document in a field called _store for each
Solr document.
Installing mb-solrquerywriter [https://github.com/metabrainz/mb-solrquerywriter/] on your Solr server will then allow you to
retrieve responses as mmd-compatible XML or the derived JSON.

_static/comment-bright.png

_images/graphviz-f9daad8d55b5ce6e460070a2f40a3f02a4e7f8ed.png
MusicBrainz DB

Process #2

Process #1 Process n

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/graphviz-58151413cbe537ca6d670209cfb229b6be234414.png
@h.revry” fanout exchange

search.retry

_images/graphviz-917e8cac89a82d6b9a7fc33ba077aa9944feb6c3.png
delete

search.delete

search.index

_images/graphviz-aee37529da9cda65c093d46b0c327c53fd3432aa.png
@h.fﬁiled” fanout exchange

search. failed

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to sir’s documentation!

 		
 Setup

 		
 Installation

 		
 Git

 		
 Setup

 		
 AMQP Setup

 		
 RabbitMQ Server

 		
 Database

 		
 Solr

 		
 MusicBrainz Database Schema

 		
 Web Service Compatibility

 		
 Usage

 		
 The import process

 		
 Paths

 		
 Queues

 		
 Service maintenance

 		
 RabbitMQ

 		
 Maintenance

 		
 Implementation details

 		
 API

 		
 Indexing

 		
 AMQP

 		
 Querying

 		
 Trigger Generation

 		
 Schema

 		
 Config

 		
 Util